Skip to main content

Electron–Phonon Scattering Rates in Semiconducting Zig-Zag Carbon Nanotubes

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The energy dependence of the scattering rate for electrons interacting with phonons in semiconducting zig-zag carbon nanotubes has been investigated using a tight-binding method. Apart from the scattering rates, their components in terms of phonon emission, phonon absorption, backscattering and forward scattering have been determined. Results for (7, 0), (10, 0), (13, 0) and (25, 0) nanotubes at both room temperature and at 10K are presented and discussed. It is demonstrated that backscattering of the electron generally is more likely than forward scattering, and that phonon absorption can be comparable to, or even more important than, phonon emission in limited energy intervals. Furthermore, the phonons responsible for the main features in the scattering rates have been identified, and the similarities in the scattering rates between different nanotubes are clarified.

Keywords: BACKSCATTERING; CARBON NANOTUBES; ELECTRON–PHONON SCATTERING; SCATTERING RATES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jctn.2011.1868

Publication date: September 1, 2011

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jctn/2011/00000008/00000009/art00009
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more