Skip to main content

Numerical Simulation for Nanoparticle Growth in Flame Reactor and Control of Nanoparticles

Buy Article:

$105.00 plus tax (Refund Policy)

We review the models and numerical methods used in flame reactor for the modeling and simulation of nanoparticle. And we also review the control of nanoparticle size distribution, some nonlinear control strategies were looked into. A general model in which nanoparticles form in gas phase and grow through chemical reaction, nucleation, condensation and coagulation is discussed. Particles dispersed in a fluid move randomly, due to Brownian motion, and, along their trajectories, they collide with each other. The model is formulated in terms of a detailed population balance which describes how aerosol size distribution evolves with time. For this population balance model, a number of different numerical approaches exist. We reviewed sectional, finite element and Monte Carlo methods, method of moments.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Review Article

Publication date: 2010-11-01

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more