Skip to main content

Graphene-Carbon Nanotube Composites

Buy Article:

$113.00 plus tax (Refund Policy)

Graphene-carbon nanotubes composites were considered as mono- and/or multiderivative structures when both tubes and graphene served either as main bodies or were attached addends. The composites were synthesized computationally in the framework of the unrestricted broken spin-symmetry approach implemented via the Hartree-Fock approximation. Computed profiles of the atomic chemical susceptibility along the tube and across their body as well as over graphene sheets served as quantified pointers that allowed localising the most active contact zones of interacting partners. Two main groups of the composites, conditionally called hammer and cutting-blade structures were considered. Additionally, a particular cradle-like composite is suggested for an individual graphene sheet to be fixed by a pair of nanotubes.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ATOMIC CHEMICAL SUSCEPTIBILITY; CARBON NANOTUBES; COMPUTATIONAL SYNTHESIS; CRADLE COMPOSITE; CUTTING-BLADE COMPOSITES; GRAPHENE; HAMMER COMPOSITES; UNRESTRICTED BROKEN SPIN-SYMMETRY HARTREE-FOCK APPROACH

Document Type: Research Article

Publication date: 2010-09-01

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more