Mechanical Response of Aluminum Nanowires via Orbital-Free Density Functional Theory

Your trusted access to this article has expired.

$113.00 plus tax (Refund Policy)

Buy Article:


Thin aluminum nanowires of widths 0.3 nm to 6.0 nm are investigated using orbital-free density functional theory. Predictions of the minimum energy structures of ultrathin aluminum nanowires as a function of the one-dimensional atomic density are given. Quasistatic orbital-free density functional theory calculations suggest that thin aluminum nanowires of bulk face-centered cubic morphology originally oriented in the [001] direction may undergo a transition to either a body-centered tetragonal [001] or a face-centered cubic [110] orientation under compression. The stable body-centered tetragonal [001] wire is almost 30% shorter than the original stable face-centered cubic [001] wire. The relative stability of the two states is tunable by varying the size of the nanowires. It may be possible to switch the state of the nanowire by uniaxial compression and expansion, leading to applications as a nanoscale actuator or switch.


Document Type: Research Article


Publication date: June 1, 2009

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more