Skip to main content

Atomistic Simulations of the Nonlinear Deformation and Damage Modes of Super Carbon Nanotubes

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

The tensile deformations and fractures of super carbon nanotubes (STs) are investigated through the atomic-scale finite element method. STs generated from carbon nanotubes (CNTs) with different characteristic aspect-ratioed arms are found to have different nonlinear behaviors in the uniaxial tension process. Specifically, the ST with higher aspect-ratioed arms has three distinct stages: rotation, stretch and rupture, while the ST with lower aspect-ratioed arms has only two stages. Moreover, the local buckling can be only observed in the ST with higher aspect-ratioed arms. This information may lay the foundations for further explorations to the properties of STs in the near future.

Keywords: DAMAGE MODE; NONLINEAR DEFORMATION; SUPER CARBON NANOTUBE; Y-BRANCHED CARBON NANOTUBE

Document Type: Research Article

DOI: https://doi.org/10.1166/jctn.2009.1004

Publication date: 2009-01-01

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more