Skip to main content

Design of a Molecular -Bridge Field Effect Transistor (MBFET)

Buy Article:

$113.00 plus tax (Refund Policy)


We study charge transfer in a molecular system composed of a donor and an acceptor coupled to each other via a carbon conjugated-bond bridge (D-bridge-A). The effects of the bridge length in the transport are analyzed in the presence of an external electric field by density functional theory methodology. We find a charge accumulation in acceptor group that is strongly dependent on the bridge length and composition. In particular, for bridges with more than four carbon conjugated atoms we observe resonance tunneling type conduction in the curve of charge accumulation versus voltage. For positive bias the resonance takes place for high voltages when compared to the negative biases. This behavior suggests that the system can operate as a molecular transistor (MBFET) at some bias range. In addition we perform a current calculation in a simple model in order to get some more insight about the transport.


Document Type: Research Article


Publication date: 2008-11-01

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more