The Alternating Electrostatic Force Needed to Optimize Growth of a Carbon Nanotube

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A carbon nanotube (CNT) vibrates at a specific frequency on the catalyst at the optimum growth temperature. When the potential energy of the CNT is maximized, a carbon atom may be present between the catalyst and the CNT. As such, the potential energy of CNT becomes kinetic energy and this energy is used to couple the CNT to the carbon atom forming the mechanism of the CNT growth. However, during the growth of the CNTs their vibration frequency decreases, slowing down their growth rate. To eliminate this problem, researchers locate the catalyst at the tip of the CNT and make the growth rate constant. Although this procedure allows the growth of CNTs with arbitrary length, the diameter of CNTs is completely dependent upon the catalyst diameter during their growth. In this paper, we develop a method of applying an alternating electrostatic force to CNTs during their growth. The simulation results show that our developed method enables a linear growth of CNTs and their size is not restrained by the catalyst diameter.

Keywords: CARBON NANOTUBE; ELECTRIC FIELD; GROWTH; PHONON VIBRATION

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jctn.2008.1115

Publication date: November 1, 2008

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more