Skip to main content

Simulation of Electron Transport in Nanoscale Independent-Gate Double-Gate Devices Using a Full 2D Green's Function Approach

Buy Article:

$105.00 plus tax (Refund Policy)

The electronic transport in independent Double-Gate nanotransistors is theoretically investigated using a self-consistent Poisson-Schrödinger solver based on a two-dimensional (real-space) Non-Equilibrium Green's Function (NEGF) approach and parallelized code architecture. Physical insights concerning the three- and four-terminal operations of these independent-gate devices are provided for long-term technology nodes (5–10 nm channel lengths) and pure ballistic operation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 June 2008

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more