Skip to main content

Semiconductor Device Modeling

Buy Article:

$105.00 + tax (Refund Policy)

In this review paper we describe a hierarchy of simulation models for modeling state of the art devices. Within the semiclassical simulation arena, emphasis is placed on particle-based device simulations that can model devices operating from diffusive down to ballistic regime. In here, we also describe in detail the proper inclusion of the short-range Coulomb interactions using real-space approach that eliminates double-counting of the Coulomb interaction (due to its partial inclusion via the solution of the Poisson equation). Regarding the quantum transport approaches, emphasis is placed on the description of the CBR method that is implemented in ASU's 2D and 3D NEGF device simulator (that is used for modeling 10 nm gate length FinFETs, which are likely to be the next generation of devices that the Industry will be mass-producing in year 2015). Comparison with existing experimental data is presented to verify the accuracy and speed of the quantum transport simulator. We conclude this review paper by emphasizing what kind of semiconductor tools will be needed to model next generation devices.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BOLTZMANN TRANSPORT EQUATION; CONTACT BLOCK REDUCTION METHOD; ELECTRON–ELECTRON AND ELECTRON–ION INTERACTIONS; FINFET DEVICES; GREEN'S FUNCTIONS; LANDAUER'S APPROACH; PARTICLE-BASED DEVICE SIMULATIONS; QUANTUM TRANSPORT; SEMICLASSICAL AND QUANTUM TRANSPORT

Document Type: Review Article

Publication date: 01 June 2008

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more