If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Near Field Heat Transfer: Where Radiation Becomes Conduction

$113.00 plus tax (Refund Policy)

Buy Article:


We show in this article that the radiative heat transfer exchanged in the near field can be interpreted as a conduction heat transfer due to the propagation of optical phonons. We consider two situations. In the first one, two heated bodies at different temperatures are separated by a gap and in the second one a temperature gradient is imposed to a bulk material. In both situations, the radiative heat transfer is calculated by means of fluctuational electrodynamics in order to take into account near field effects. Asymptotic expressions of a thermal conductivity are obtained from the radiative heat transfer calculation. We interpet this conductivity as a consequence of the heat transfer by propagation of optical longitudinal phonons.


Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jctn.2008.007

Publication date: February 1, 2008

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more