Skip to main content

Higher-Order Time-Domain Simulations of Maxwell's Equations Using Krylov-Subspace Methods

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We present a highly efficient numerical method to solve Maxwell's equations in the time domain that employs a Krylov-subspace based operator-exponential technique. As compared to standard finite-difference time-domain (FDTD) methods, this approach allows much larger time steps while at the same time the computations become more accurate. In contrast to other operator-exponential based approaches, the Krylov-subspace technique is directly capable of handling lossy and anisotropic materials as well as advanced boundary conditions such as perfectly matched layers. Owing to its generality, our approach can be extended to more complex problems where the electromagnetic field is coupled to other physical systems.

Keywords: ELECTROMAGNETIC WAVE PROPAGATION; KRYLOV SUBSPACE METHOD; NANO-PHOTONICS; NUMERICAL SIMULATION

Document Type: Research Article

DOI: https://doi.org/10.1166/jctn.2007.027

Publication date: 2007-05-01

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more