The Effect of Defects on the Mechanical Behavior of Silver Shape Memory Nanowires

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We present atomistic simulations of the uniaxial tensile deformation of silver shape memory nanowires to investigate the effects of initial defects on the resulting thermomechanical behavior. In particular, the focus of the work is on investigating the unique atomistic deformation mechanisms that are observed during the tensile loading as a result of the initial defects, while correlating that behavior to the measured mechanical properties of the shape memory nanowires. In particular, wires with initial defects show a non-constant stress state during the 〈110〉/{111} to 〈100〉/{100} reorientation due to the presence of multiple propagating twin boundaries, as well as reductions in transformation stresses and strains due to the presence of the initial defects. Under most circumstances, the wires with initial defects still tend to exhibit complete reversibility between the 〈110〉/{111} and 〈100〉/{100} orientations, and thus the shape memory effect. Comparisons are made to defect-free shape memory nanowires to illustrate the relative mechanical performance of each structure.

Keywords: ATOMISTIC SIMULATION; INITIAL DEFECTS; PSEUDOELASTICITY; SHAPE MEMORY; SILVER NANOWIRES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jctn.2007.019

Publication date: May 1, 2007

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more