Skip to main content

Balaban Index of an Armchair Polyhex, TUC4C8(R) and TUC4C8(S) Nanotorus

Buy Article:

$105.00 plus tax (Refund Policy)

The Balaban index of a graph G is defined as m/(μ + 1)Σ e=uv[d(u)d(v)]−0.5, where m is the number of edges of G, μ is the cyclomatic number of G and for every vertex x of G, d(x) is the summation of distances between x and all vertices of G. In this paper, the Balaban index of an armchair polyhex, TUC4C8(R) and TUC4C8(S) nanotorus are computed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ARMCHAIR POLYHEX NANOTORUS; BALABAN INDEX; TUC4C8(R) NANOTORUS; TUC4C8(S) NANOTORUS

Document Type: Research Article

Publication date: 2007-05-01

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more