Skip to main content

Nanoplexes for Cell Imaging and Hyperthermia: In Vitro Studies

Buy Article:

$105.00 plus tax (Refund Policy)

Novel IR820-polyethylene glycol-diamine nanoplexes (IR820-PDNCs) have potential multifunctional imaging-hyperthermia applications in cancer. Nanoplexes were formulated by ionic interaction and characterized in vitro for their imaging and hyperthermia capabilities. The resulting nanoplexes were approximately 50 nm diameter, with a zeta potential of 2.0±0.9 mV, and able to generate heat upon exposure to 808 nm laser. Cytotoxicity studies in SKOV-3, MES-SA and Dx5 cancer cell lines demonstrate comparable cytotoxicity of IR820-PDNCs versus free IR820 after 24 hours. The nanoplexes are able to produce hyperthermic cell growth inhibition in all three cancer cell lines after excitation with laser. The level of cell growth inhibition caused by hyperthermia is significantly higher for IR820-PDNCs compared to IR820 in MES-SA and Dx5 cells. Fluorescent microscope images after 2.5-hour exposure to 5 μM IR820-PDNCs or 5 μM free IR820 show increased uptake for IR820-PDNCs compared to free IR820, especially for SKOV-3 and Dx5 cancer cells. This formulation can potentially be used in multifunctional cancer theranostics.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: CANCER; HYPERTHERMIA; IMAGING; IR820; NANOPLEXES

Document Type: Research Article

Publication date: 2012-08-01

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more