Skip to main content

Immunomodulatory Properties of Nanoparticles Obtained by Ultrasonic Spray Pirolysis from Gold Scrap

Buy Article:

$105.00 plus tax (Refund Policy)

We prepared 5 different fractions of nanoparticles from the gold scrap, by using a new technology, Ultrasonic Spray Pirolysis (USP). The aim of this study was to characterize the microstructure and cytotoxicity of the nanoparticles along with their immunomodulatory properties, using Concanavaline A (ConA)-treated rat splenocytes as a model of activated immune cells. Fractions 1 and 2, composed of pure gold nanoparticles, although non-cytotoxic, reduced cellular proliferation. Fraction 2, containing particles smaller in size and lesser agglomerated than fraction 1, up- and down-regulated the production of IL-2 and IL-10, respectively, by activated splenocytes. Fraction 3, containing nanoparticles composed of Au and up to 3 at.% Cu, was non-cytotoxic, but reduced IL-2 production and cell proliferation. Fractions 4 and 5, contaminated with alloying elements from the gold scrap, were cytotoxic. The extent of cytotoxicity and subsequent reduction of cytokine production, as well as the mode of cell death, depended on their composition. In conclusion, we showed that USP enables the synthesis of gold nanoparticles, which could be suitable for various biological applications, and that ConA-treated splenocytes represent a reliable model for fast and accurate evaluation of the immunotoxicological profiles of these particles. However, it is necessary to improve this technology and investigate further some of the immunomodulatory mechanisms using more specific immunological tests.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2012-06-01

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more