Skip to main content

Fabrication, Characterization and Antibacterial Effect of Novel Electrospun TiO2 Nanorods on a Panel of Pathogenic Bacteria

Buy Article:

$105.00 plus tax (Refund Policy)

This study is aimed at the synthesis and characterization of novel Titania nanorods by sol–gel electrospinning technique. The physicochemical properties of the synthesized nanorods were determined by FE-SEM, EDX, TEM, TGA and XRD. We investigated the photocatalytic activity of Titania nanorods for degrading Rhodamine 6G dye and discussed the antibacterial activity and interaction mechanism against four pathogenic bacteria viz., S. aureus, E. coli, S. typhimurium and K. pneumoniae by taking five different concentrations (5–45 μg/mL). The antibacterial effect of electrospun Titania nanorods was tested both in liquid culture and on agar plates. Our investigation reveals that the lowest concentration of Titania nanorods solution inhibiting the growth of microbial strain was found to be 5 μg/mL for all the tested pathogens. The photocatalytic activity of TiO2 nanorods showed better performance for dye degradation than commercially available P25. Moreover, Bio-TEM examination demonstrated that the exposure of the selected microbial strains to the Titania nanorods led to disruption of the cell membranes and leakage of the cytoplasm which cause bacteria to die eventually. Our results point the oxidative attack from exterior to the interior of the bacteria by hydroxyl radicals as the primary mechanism of photocatalytic inactivation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ANTIBACTERIAL MECHANISM; BIO-TRANSMISSION ELECTRON MICROSCOPY (TEM); PATHOGENIC BACTERIA; TITANIA NANORODS

Document Type: Research Article

Publication date: 2012-06-01

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more