Skip to main content

Carbosilane Dendrimers are a Non-Viral Delivery System for Antisense Oligonucleotides: Characterization of Dendriplexes

Buy Article:

$105.00 plus tax (Refund Policy)

The success of gene therapy depends on the development of suitable carriers, and because of their architecture dendrimers are promising tools for gene delivery. This research concerns the use of second generation carbosilane dendrimers as carriers for anti-HIV oligodeoxynucleotides (ODNs). The aim was to characterize complexes formed by positively charged dendrimers and negatively charged oligonucleotides using a fluorescence method, laser Doppler electrophoresis, dynamic light scattering (DLS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and molecular modeling. The zeta-potential of ODNs increased from −25 mV to positive values after the addition of dendrimers. DLS and TEM revealed that the diameters of dendriplexes ranged from 75 to 240 nm and from 50 to 260 nm, respectively, and this was dependent on the type of dendrimer and the molar ratios of the complexes formed; complexes were stable for between 100 and 300 minutes. AFM measurements and molecular modeling studies were carried out to determine the structure and size of dendriplexes. The physicochemical properties of the dendriplexes studied and data from previous research suggest that carbosilane dendrimers are good candidates for nucleic acid delivery.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ANTISENSE OLIGONUCLEOTIDE; ATOMIC FORCE MICROSCOPY; CARBOSILANE DENDRIMER; DENDRIPLEX; DRUG DELIVERY; HYDRODYNAMIC DIAMETER; MOLECULAR MODELING; ZETA POTENTIAL

Document Type: Research Article

Publication date: 01 February 2012

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more