Skip to main content

Nanoparticles to Increase Adhesive Properties of Biologically Secreted Materials for Surface Affixing

Buy Article:

$113.00 plus tax (Refund Policy)


Surface adhesion in nature has been the focus of intense study over the past few years. Nevertheless, research in this field has primarily concentrated on understanding the chemical aspects of adhesion. While scientists have been able to determine some of the molecular structures present in the adhesives secreted by surface climbing or surface affixing biological systems such as mussels and barnacles, the fundamental adhesion mechanisms used by these systems are still unknown. This research paper focuses on the nano-scale morphological similarities of adhesive materials secreted from marine mussels, barnacles and ivy. We discovered that marine mussels secrete large amounts of adhesive materials in the form of nanoparticles for surface adhesion. This is in keeping with our previous work, which indicated a similar phenomenon for ivy. Both studies concur with earlier research on marine barnacles, polychaetes and sea stars. Taken together, these results indicate that nanoparticles are used by natural, biological systems to increase surface adhesion. These nanoparticle surface adhesion mechanisms have important implications in terms of engineering surface adhesive materials and devices.


Document Type: Research Article


Publication date: 2009-06-01

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more