Skip to main content

Magnesium Phosphate Nanoparticles can be Efficiently Used In Vitro and In Vivo as Non-Viral Vectors for Targeted Gene Delivery

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Magnesium phosphate (MgPi) nanoparticles (NPs) encapsulating pSVgal and pEGFP have been used as novel non-viral vector for targeted gene delivery. These plasmid DNA loaded magnesium phosphate nanoparticles of diameter 100–130 nm were prepared in water-in-oil microemulsion. In vitro cell viability study carried out on MCF-7, HEK, and COS-7 cells demonstrated that magnesium phosphate nanoparticles have no cytotoxic effect against cell proliferation. In vivo cytotoxicity conducted on Swiss Albino mice indicated no cytotoxic effect 3 months after intraperitoneal administration of 600 mg of void magnesium phosphate nanoparticles per Kg of body weight one-time only. In vitro transfection in COS-7 cells demonstrated that magnesium phosphate nanoparticles showed approximately 100% efficiency when compared to commercial transfecting reagent Polyfect® as well as the transfection efficiency of calcium phosphate (CaPi) nanoparticles recently reported. Moreover, to explore the possibility of targeting these nanoparticles to specific tissue, we have surface modified these particles by adsorbing highlyt adhesive polymer, polyacrylic acid (PAA), followed by conjugating the carboxylic groups of the polymer with p-amino-thio--galactopyranoside (PAG) using a cross-linking agent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and used these particles to target to liver in vivo successfully and more efficiently.

Keywords: GENE DELIVERY; LIVER TARGETING; MAGNESIUM PHOSPHATE NANOPARTICLES; NON-VIRAL VECTORS; PSVGAL; TRANSFECTION EFFICIENCY

Document Type: Research Article

DOI: https://doi.org/10.1166/jbn.2009.029

Publication date: 2009-02-01

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more