Skip to main content

Influence of "Flexible" versus "Rigid" Nanoparticles on the Stability of Matrix Metalloproteinase-7

Buy Article:

$113.00 plus tax (Refund Policy)


Matrix Metalloproteinase-7 (MMP-7) is invariably expressed in a variety of cancer cells, and exhibits the potentials to interact with differently charged macromolecular surfaces. To ascertain whether the nature of the charge carrying surfaces influences the stability as well as catalytic properties of the enzyme, we compared the effects of differently charged lipid (representative of "flexible") and gold ("rigid") nanoparticles. The experimental data revealed that the catalytic activity of MMP-7 is impaired only by the positively charged lipid nanoparticles, and it remains unaffected by their negatively charged or neutral counterparts. On the other hand, both positively and negatively charged gold nanoparticles impair the enzyme activity with nearly equal potency; no significant influence of neutral gold nanoparticles was noted on the enzyme activity. Unlike lipid nanoparticles, the charged gold nanoparticles mediated effects were found to be manifested partially via the inactivation of the enzyme. Arguments are presented that both the "rigidity" as well as the surface curvature of the lipid ("flexible") vis a vis the gold ("rigid") nanoparticles are responsible for eliciting differential influence on the catalytic activity as well as the stability of MMP-7.


Document Type: Research Article


Publication date: December 1, 2008

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more