Skip to main content

Polymeric Nanocarriers for siRNA Delivery: Challenges and Future Prospects

Buy Article:

$105.00 plus tax (Refund Policy)

Since the discovery of RNA interference in higher eukaryotes a decade ago, small interfering RNAs have been suggested to possess a large therapeutic potential. Small interfering RNAs can knock down expression of specific target genes by initiating mRNA degradation upon Watson-Crick base pairing with the target transcript in the cell cytoplasm. This sequence-specific regulation is promising for treatment of serious pathological conditions such as cancer, infections and inflammatory diseases. However, poor cellular uptake and lack of intracellular delivery represents major barriers for the widespread use of RNA interference, along with the instability of RNA at physiological conditions. This is due to unfavourable biopharmaceutical characteristics of the relatively large and polyanionic small interfering RNA duplexes. Therefore, successful clinical application depends on effective delivery systems to circumvent drug degradation and excretion, as well as to direct the small interfering RNAs towards the diseased tissue to reach the cytoplasm of the target cells. Non-viral, polymeric carriers are widely used delivery vehicles for nucleic acids in general. This review gives an overview of currently applied polymer-based nanoparticulate delivery systems for small interfering RNAs, with focus on the physico-chemical properties of the carriers and on reported in vivo applications. In addition, the safety of polymeric siRNA delivery system is discussed, and possible ways to overcome problems of toxicity and immune activation are highlighted.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Review Article

Publication date: 2008-09-01

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more