Skip to main content

PEGylation of Nanocarrier Drug Delivery Systems: State of the Art

Buy Article:

$113.00 plus tax (Refund Policy)


"PEGylation" has become the most widely used method for imparting stealth properties to drug nanocarriers. PEGylation of nanoparticles provides a steric barrier to the adsorption of opsonin proteins due to the neutrality, hydrophilicity, flexibility, and capacity for hydration of the PEG moiety. PEGylation of particle surfaces can be achieved by simple adsorption or through the covalent attachment of PEG to activated functional groups on the surface of the particles. PEG molecules have also been modified to enhance their uptake by specific targets (e.g., tumors) and to achieve the controlled release of entrapped therapeutic agents. Accompanying the prevalence of PEGylation has been the development of a wide variety of characterization techniques and the increasing use of mathematical modeling to guide formulation development. This review summarizes the theories behind PEGylation, PEGylation methodology, the characterization of PEGylated particles, and related mathematical modeling as well as how it can be utilized in the optimization of nanocarrier drug delivery systems. The current successes and failures of PEGylation are evaluated in order to provide a vision for the future of nanocarrier PEGylation and nanomedicine in general.


Document Type: Review Article


Publication date: June 1, 2008

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more