Skip to main content

Free Content Skeletal Effects of Long-Duration Head-Down Bed Rest

Download Article:
(HTML 36.1416015625 kb)
(PDF 597.6875 kb)
Spector ER, Smith SM, Sibonga JD. Skeletal effects of long-duration head-down bed rest. Aviat Space Environ Med 2009; 80(5,Suppl.):A23–8.

Introduction: Skeletal unloading during spaceflight causes regional loss of bone mineral density (BMD), primarily in the spine and lower body regions. This loss of skeletal mass could adversely affect crew health during and after spaceflight and jeopardize mission success. Bed rest has long been used as a spaceflight analog to study the effects of disuse on many body systems, including the skeleton. This study was undertaken by the NASA Flight Analogs Project (FAP) to collect control data for upcoming countermeasure studies. Methods: There were 13 subjects who participated in 42, 44, 49, 52, 60, or 90 d of continuous, head-down bed rest. DXA scans (dual-energy X-ray absorptiometry) were obtained before and after bed rest to measure changes in BMD of the whole body, lumbar spine, hip, heel, and wrist; the 90-d subjects were also scanned at the 60-d time point. Follow-up DXA scans were performed after 6 mo and 12 mo of reambulation to assess BMD recovery. Results: BMD changes were consistent with earlier bed rest and spaceflight studies, with statistically significant losses averaging 1% per month in the hip, pelvis, and heel. Recovery data were also consistent with data obtained after spaceflight. Bone biomarker data are described, and support the findings of previous studies. Specifically, the process of normal bone remodeling is uncoupled: increased bone resorption with no concomitant change in bone formation. Conclusion: The FAP appears to be a valid test bed for skeletal disuse studies, and should provide a useful research platform for evaluating countermeasures to spaceflight-induced bone loss.

12 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: BMD recovery; bone formation; bone mineral density; bone resorption; disuse; microgravity

Document Type: Research Article

Publication date: 2009-05-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more