If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content Survivability and Injuries from Use of Rocket-Assisted Ejection Seats: Analysis of 232 Cases

 Download
(HTML 65.4kb)
 
or
 Download
(PDF 246kb)
 
Download Article:

Abstract:

Lewis ME. Survivability and injuries from use of rocket-assisted ejection seats: analysis of 232 cases. Aviat Space Environ Med 2006; 77:936–943.



Introduction: Ejection injury has been documented with respect to non-rocket-assisted seats, but there is little information on injuries associated with rocket-assisted seats. This study analyses the survivability of military accidents and the injuries associated with rocket-assisted ejection. Methods: A total of 232 Royal Air Force accident reports were accessed and aircrews’ injuries were related to the aircraft parameters of ejection, aircrew anthropometry, and the ejection seat and parachute dynamics. Ejection sequences were simulated using a computerized modeling tool to provide information relating to the dynamic response index, acceleration of the ejection seats, and performance of the parachutes. Results: Ejection survival was 89.2% overall, 95.7% for within envelope ejections and 23.8% for out of envelope ejections. There were 29.4% of aircrew who sustained spinal fractures. Another 14.2% of aircrew sustained a head injury and the incidence of head injury in Tornado ejectees was higher than the other aircraft types. Compared with 5.8% of ejectees from aircraft with an arm restraint system, 11.2% of aircrew sustained upper limb flail injuries from ejecting from aircraft without an arm restraint system. Arm flail injuries occurred at a higher aircraft speed at ejection compared with ejections where no arm flail injuries were sustained. There was also 18% of aircrew who sustained lower limb parachute landing injuries. Discussion: Information from this study has lead to a redesign of the Tornado ejection seat headbox, an improvement in the Tornado ejection catapult dynamics, an upgrade of escape system parachutes, and provided evidence that future aircraft should be fitted with an arm restraint system.

Keywords: fast jet; head injury; parachuting injury; vertebral fracture

Document Type: Research Article

Publication date: September 1, 2006

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more