Numerical Simulations Investigating the Regional and Overall Deposition Efficiency of the Human Nasal Cavity

Authors: Shanley, Kevin1; Zamankhan, Parsa1; Ahmadi, Goodarz1; Hopke, Philip2; Cheng, Yung-Sung3

Source: Inhalation Toxicology, Volume 20, Number 12, 2008 , pp. 1093-1100(8)

Publisher: Informa Healthcare

Buy & download fulltext article:


Price: $35.96 plus tax (Refund Policy)


Numerical simulations have been carried out on a model of the right passageway of an anonymous, adult male's nasal cavity, constructed from magnetic resonance imagery (MRI) scans. Steady, laminar, inspiratory flow was assumed to simulate inhalation. Analysis shows smoothly varying streamlines with a peak in velocity magnitude occurring in the nasal valves and a peak in vorticity magnitude immediately posterior. Dilute, uniform concentrations of inertial (1 m dae 10 m) particles were released at the nostril and tracked via a Lagrangian tracking algorithm. Deposition efficiency is shown to increase with particle size and flow rate. Preferential deposition is seen in the anterior third of the nasal cavity for large Stokes number particles. An empirical expression for particle deposition is proposed that incorporates particle size, flow rate, and nose anatomy.

Document Type: Research Article


Affiliations: 1: Department of Mechanical and Aeronautical Engineering Clarkson University, Potsdam, New York 2: Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 3: Lovelace Respiratory Research Laboratory, Albuquerque, New Mexico, USA

Publication date: January 1, 2008

More about this publication?
Related content


Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page