Particle Size Distribution and Inhalation Dose of Shower Water Under Selected Operating Conditions

Authors: Zhou, Yue; Benson, Janet; Irvin, Clinton; Irshad, Hammad; Cheng, Yung-Sung

Source: Inhalation Toxicology, Volume 19, Number 4, January 2007 , pp. 333-342(10)

Publisher: Informa Healthcare

Buy & download fulltext article:


Price: $35.96 plus tax (Refund Policy)


Showering produces respirable droplets that may serve to deposit pollutants such as trihalomethane decontamination products, heavy metals, inorganic salts, microbes, or cyanoacterial toxins within the respiratory tract. The extent and importance of this route of indoor exposure depend on the physical characteristics of the aerosol as well as the pollutant profile of the source water. The purpose of this study was to characterize shower-generated aerosols as a function of water flow rate, temperature, and bathroom location. Aerosols were generated within a shower stall containing a mannequin to simulate the presence of a human. Using hot water, the mass median diameter (MMD) of the droplets inside the shower and in the bathroom were 6.3-7.5 um and 5.2-6 m, respectively. Size was independent of water flow rate. The particle concentration inside the shower ranged from 5 to 14 mg/m3. Aerosols generated using cold water were smaller (2.5-3.1 m) and concentrations were lower (0.02-0.1 mg/m3) inside the shower stall. No aerosols were detected in the bathroom area when cold water was used. The International Commission on Radiological Protection model was used to estimate water deposition in the respiratory tract. For hot water, total deposition ranged from 11 to 14 mg, depending on water flow rate, with approximately 50% of this deposited in the extrathoracic region during assumed mouth breathing, and greater than 86% when nose breathing was assumed. Alveolar deposition was 6-10% and 0.9% assuming oral and nasal breathing, respectively. The consequences deposition of shower water droplets will depend on the nature and extent of any pollutants in the source water.

Document Type: Research Article


Affiliations: Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA

Publication date: January 1, 2007

More about this publication?
Related content


Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page