Skip to main content

Free Content Density Functional Theory Study of the Gas-Phase Reaction of U+ with CO2

Download Article:
The gas-phase reaction of U+ with CO2 was investigated with B3LYP density functional theory (DFT) in conjunction with the relativistic effective core potential (ECP) of the SDD basis sets for Uand the 6-311 + G(d) basis set for C and O. The potential energy surfaces (PESs) of the reaction system were explored in detail for both doublet and quartet spin states. The geometries of reactants, intermediates, transition states, and products in the two reaction pathways were fully optimized. The reaction mechanism was analyzed using"two-state reactivity (TSR)."The calculations demonstrate that the reaction preferentially involves the high-spin state entrance channel and the low-spin state exit channel. The spin multiplicity transition from the quartet state to the doublet state enables the reaction system to find a lower energy pathway.

Keywords: Density functional theory; Potential energy surface; Reaction mechanism; Relativistic effective core potential; Spin state

Document Type: Research Article

Affiliations: 1: Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001, Anhui Province, P. R. China 2: Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

Publication date: 15 November 2013

More about this publication?
  • Acta Physico-Chimica Sinica, founded in 1985, is sponsored by the Chinese Chemical Society and organized by the College of Chemistry and Molecular Engineering, PekingUniversity. Since 1997, Acta Physico-Chimica Sinica has been indexed in SCI of ISI (US). Acta Physico-Chimica Sinica is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and material physical chemists. Manuscripts that are essentially reporting data, applications of data, or reviews of the literature are not suitable for publication in Acta Physico-Chimica Sinica.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content