Skip to main content

Free Content Molecular Dynamics Simulation of CH4 Hydrate Decomposition in the Presence of Poly(2-ethyl-2-oxazoline)

Molecular dynamics simulations were carried out to study the decomposition of CH4 hydrate in the presence of poly(2-ethyl-2-oxazoline) (PEtO) at different concentrations, including 1.25% , 2.50%, and 6.06% (w, mass fraction). The simulation system was composed of a CH4 hydrate crystal and PEtO, which contained a 2×2×2 supercell of CH4 hydrate crystal and PEtO polymer. System configurations showed that hydrogen bonding networks between water molecules making up the main framework of the hydrate cages were distorted in the presence of the PEtO polymer. Final configurations in all of the systems were completely collapsed. Radial distribution functions of the oxygen atoms, mean square displacements, and diffusion coefficients of water molecules were applied to compare the effect of different PEtO concentrations on the CH4 hydrate. Within a certain concentration range, higher concentrations led to a better inhibition effect. It was confirmed that PEtO is a type of prospective low dosage inhibitor with biodegradability. The decomposition mechanism involves the absorption of the PEtO polymer onto the surface of the hydrate crystal, with its active functional group (N ―CO) forming hydrogen bonds with water molecules in the hydrate and decomposing the hydrate surface. PEtO continued to decompose the surface layer of hydrate, resulting ultimately in the collapse of the hydrate cages.

Keywords: CH4 hydrate; Hydrate inhibitor; Molecular dynamics simulation; Poly(2-ethyl-2-oxazoline)

Document Type: Research Article

Publication date: 15 July 2012

More about this publication?
  • Acta Physico-Chimica Sinica, founded in 1985, is sponsored by the Chinese Chemical Society and organized by the College of Chemistry and Molecular Engineering, PekingUniversity. Since 1997, Acta Physico-Chimica Sinica has been indexed in SCI of ISI (US). Acta Physico-Chimica Sinica is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and material physical chemists. Manuscripts that are essentially reporting data, applications of data, or reviews of the literature are not suitable for publication in Acta Physico-Chimica Sinica.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content