Double-Quantum Double-Quantum MAS Exchange NMR Spectroscopy: Dipolar-Coupled Spin Pairs as Probes for Slow Molecular Dynamics

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


By combining two dipolar double-quantum (DQ) MAS experiments, a homonuclear DQ-DQ MAS exchange experiment has been designed, which probes the reorientation of dipolar tensors and allows the observation of slow molecular dynamics, in particular the determination of reorientation angles and rates. The dipolar coupling between two distinct spins is used to generate a DQ coherence, and the orientation-dependent coupling is measured by means of the DQ MAS sideband pattern before and after a mixing time. In the course of a reduced three-dimensional experiment, the two DQ sideband patterns are correlated, resulting in a DQ-DQ sideband pattern which is sensitive to the reorientation angle. By referencing the DQ-DQ time signal, the information content of the pattern can be divided into the sidebands and the centerband, with the former reflecting only the moieties which have undergone a reorientation, and the latter predominantly containing contributions from moieties which have remained in, or returned to, their initial position. Hence, a single sideband pattern provides access to both the reorientation angle and the relative number of moieties subject to the motional process. As a first example, such DQ-DQ MAS experiments were performed on the 13C–13C spin pairs of an enriched poly(ethylene) sample. In its crystallites, the dynamics of a known chain-flip motion were investigated, yielding a 13C–13C reorientation angle of Δij=(70±5)° and an activation energy of EA=(100±20) kJ mol-1.

Document Type: Research Article

Affiliations: 1: Max-Planck-Institut für Polymerforschung, Mainz, D-55021, Germany 2: Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom

Publication date: March 1, 2001

Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more