If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Counting cycles and finite dimensional Lp norms

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:



We obtain sharp bounds for the number ofn-cycles in a finite graph as a function of the number of edges, and prove that the complete graph is optimal in more ways than could be imagined. We prove sharp estimates on both\sum _{\scriptscriptstyle{i=\mathrm{1}}}^{\scriptscriptstyle{n}}x_{\scriptscriptstyle {i}}^{\scriptscriptstyle{k}}and\sum _{\scriptscriptstyle{i=\mathrm{1}}}^{\scriptscriptstyle{n}}\vert x_{\scriptscriptstyle{{i}}}\vert ^{\scriptscriptstyle{{k}}}, subject to the constraints that\sum _{\scriptscriptstyle{i=\mathrm{1}}}^{\scriptscriptstyle{n}}x_{\scriptscriptstyle {i}}^{\scriptscriptstyle{\mathrm{2}}}=Cand\sum _{\scriptscriptstyle{i=\mathrm{1}}}^{\scriptscriptstyle{n}}x_{\scriptscriptstyle {{i}}}=\mathrm{0}.

© 2002 Elsevier Science (USA)

Document Type: Research Article

DOI: http://dx.doi.org/10.1016/S0196-8858(02)00037-4

Publication date: November 1, 2002

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more