Skip to main content

Determination of Bisphenol Ain Water by Isotope Dilution Headspace Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry Without Derivatization

Buy Article:

$45.00 plus tax (Refund Policy)

The original solid-phase microextraction (SPME) fibers use an epoxy resin adhesive that releases bisphenol A (BPA) during thermal desorption of the fiber. This adversely affects the method detection limit and accuracy when these products are used for the determination of BPA. In this work, 5 new metal alloy SPME fibers that do not use epoxy resins were compared for the extraction of BPA in water. The performance of the optimum SPME fiber with 60 m carbowax-polyethylene glycol coating for the headspace SPME of BPA in water was investigated systematically under different extraction conditions. Salt was found to increase the partitioning of BPA from water into the headspace until saturation was reached. Partitioning of BPA from water into the headspace also increased at higher extraction temperatures, as did longer extraction times. However, extraction of BPA from water onto the SPME fiber was not improved for solutions adjusted to pH 2 compared to the unadjusted neutral solutions. The new BPA method showed good linearity over the concentration range of 2.5 to 40 g/L [correlation coefficient (r2) = 0.995] .The method detection limit for BPA was 0.5 g/L, while the instrument detection limit was as low as 0.05 g/L. Good repeatability was observed for BPA at levels of 5 and 20 g/L with relative standard deviation values <10. The automated headspace SPME method developed in this work was used to investigate migration of BPA from polycarbonate bottles into water, and levels of BPA in water ranged from 1.7 to 4.1 g/L.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Health Canada, Food Directorate, Bureau of Chemical Safety, Food Research Division, 251 Sir Frederick Banting Dr, AL: 2203D, Ottawa, Ontario, Canada K1A 0L2.

Publication date: 2008-05-01

More about this publication?
  • The Journal of AOAC INTERNATIONAL publishes refereed papers and reviews in the fields of chemical, biological and toxicological analytical chemistry for the purpose of showcasing the most precise, accurate and sensitive methods for analysis of foods, food additives, supplements and contaminants, cosmetics, drugs, toxins, hazardous substances, pesticides, feeds, fertilizers and the environment available at that point in time. The scope of the Journal includes unpublished original research describing new analytical methods, techniques and applications; improved approaches to sampling, both in the field and the laboratory; better methods of preparing samples for analysis; collaborative studies substantiating the performance of a given method; statistical techniques for evaluating data. The Journal will also publish other articles of general interest to its audience, e.g., technical communications; cautionary notes; comments on techniques, apparatus, and reagents.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Journal Information
  • Masthead
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more