Numerical Comparison of Dynamic Stall for Two-Dimensional Airfoils and an Airfoil Model in the DNW–TWG

$30.00 plus tax (Refund Policy)

Buy Article:


The airfoil sections of helicopter rotors experience a wide range of flow conditions in forward flight from transonic flow on the advancing blade to subsonic flow and high angles of attack on the retreating blade. Most notably, the dynamic stall phenomenon has been a research topic for decades and various models have been introduced to predict the unsteady characteristics of the rotor blade undergoing unsteady separation. The objective of the present paper is to compare two-dimensional (2D) dynamic stall computations, suitable for airfoil design studies considering unsteady characteristics, with computational fluid dynamics simulations of the wind tunnel environment taking into account three dimensionality and wall effects. Differences between experiment and 2D computations can be partly attributed to sidewall effects, which alter the effective angle of attack at the midsection pressure measurement plane. To gain more insight into these effects, investigations are presented, which show the wind tunnel wall boundary layers and separation effects at the sidewall–airfoil junction.

Document Type: Research Article


Publication date: October 1, 2012

More about this publication?
  • The Journal of the American Helicopter Society is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by AHS International and presents innovative papers covering the state-of-the-art in all disciplines of rotorcraft design, research and development. (Please note that AHS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are AHS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the AHS website.

Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more