Skip to main content

Assessment of Scavenge Efficiency for a Helicopter Particle Separation System

Buy Article:

$30.00 plus tax (Refund Policy)

Abstract:

The effectiveness of a helicopter particle separation system has been numerically assessed at practical operating conditions and sand environments for various scenarios. The particle separation mechanism and its limitations are revealed by the predicted flow field characteristics and particle trajectories. The separation-by-inertia concept is effective for removing large particles, but problematic for small particles of diameter ≤36 μm for the configuration and operating conditions considered in the present study. It is also found that particle size, shape factor, and rebound characteristics exert substantial effects on particle scavenge efficiency. However, the effects of gravity, particle inlet velocity, inlet mass distribution, and engine-operating conditions on scavenge efficiency are minor or limited. Finally, a few suggestions for further investigation on engine particle separation systems are included.

Document Type: Research Article

DOI: http://dx.doi.org/10.4050/JAHS.57.022007

Publication date: April 1, 2012

More about this publication?
  • The Journal of the American Helicopter Society is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by AHS International and presents innovative papers covering the state-of-the-art in all disciplines of rotorcraft design, research and development. (Please note that AHS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are AHS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the AHS website.

ahs/jahs/2012/00000057/00000002/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more