Experimental Studies to Understand the Hover and Forward Flight Performance of a MAV-Scale Flapping Wing Concept

$30.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Systematic experimental studies were performed to understand the role of two key degrees of freedom, flapping and pitching, in aerodynamic performance of a flapping wing, in both hover and forward flight. Required flapping kinematics is prescribed mechanically, and dynamic pitching/twisting is obtained passively using inertial and aerodynamic forces. Forces produced by the wing are measured at the root using a six-component balance at different flapping frequencies, flapping/pitching amplitudes, and wind speeds. The results clearly show that maximum average thrust over a flap cycle in hover can be achieved using symmetric, high amplitude passive pitching. However, in forward flight, optimum aerodynamic performance (lift and propulsive thrust) is obtained using asymmetric wing pitching with low pitching amplitudes. Furthermore, dynamic twisting (obtained using flexible wings), instead of dynamic pitching, produces better performance in forward flight due to spanwise and temporal modulation of the wing pitch angle. Pure flapping (no pitching) of rigid wings in forward flight at high reduced frequencies and high pitch angles produces a threefold increase in lift coefficient over static values. Maximum average propulsive thrust over a flap cycle in forward flight is obtained using symmetric pitching. To produce high values of both, average lift and thrust, an asymmetry in kinematics along with pitching is required in forward flight. This can be achieved either through asymmetric pitching of rigid wings or dynamic twisting of torsionally flexible wings.

Document Type: Research Article

DOI: http://dx.doi.org/10.4050/JAHS.57.022003

Publication date: April 1, 2012

More about this publication?
  • The Journal of the American Helicopter Society is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by AHS International and presents innovative papers covering the state-of-the-art in all disciplines of rotorcraft design, research and development. (Please note that AHS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are AHS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the AHS website.

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more