Skip to main content

Influence of Dynamic Stall and Dynamic Wake Effects on Helicopter Trim and Rotor Loads

Buy Article:

$22.00 plus tax (Refund Policy)

Flight test data of helicopters indicate that vibratory levels in the fuselage exhibit a wide spectrum of frequencies including the dominant blade passage frequency and its integer multiples. The present work attempts to understand the reason for the existence of several frequencies in the response of the fuselage and possible cause for this observed phenomenon by formulating a computational aeroelastic model. In this theoretical study, a systematic approach has been undertaken to identify the effects of inflow modeling and sectional aerodynamic load evaluation, on helicopter trim, rotor blade response, and hub loads. Five different combinations of aerodynamic models of increasing complexity, representing rotor inflow and sectional aerodynamic loads, have been proposed. The differential equations of motion are solved in time domain in a sequential manner to obtain the response of all the blades in the rotor system, the inflow variables, and the sectional loads at every time step. The results of the present study show that the aerodynamic model incorporating dynamic wake and dynamic stall effects introduces a wide spectrum of harmonics in the hub loads including blade passage frequency and its integer multiples. The influence of aerodynamic modeling on the variation of trim parameters with forward speed has also been brought out. It is observed that the aerodynamic model incorporating dynamic wake and dynamic stall effects predicts the trim parameters whose variation with forward speed resemble qualitatively similar to those obtained in flight test. A comparison of the variation of blade sectional lift for various aerodynamic models indicates that in the advancing side of the rotor, a dynamic stall model introduces a shift in the azimuth angle at which the minimum lift occurs. The effect of structural flap—lag coupling due to blade pretwist on trim and rotor loads has been studied, and these results are compared with those pertaining to a straight blade configuration.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Aerospace Engineering, Indian Institute Technology Kanpur, Kanpur, India

Publication date: 01 July 2009

More about this publication?
  • The Journal of the American Helicopter Society is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by AHS International and presents innovative papers covering the state-of-the-art in all disciplines of rotorcraft design, research and development. (Please note that AHS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are AHS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the AHS website.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more