Skip to main content

Rotorcraft Vibration Reduction and Noise Prediction Using a Unified Aeroelastic Response Simulation

Buy Article:

$22.00 plus tax (Refund Policy)

A numerical simulation of noise generation during closed‐loop vibration reduction using actively controlled flaps (ACFs) has been conducted. To develop this simulation capability, a rotor aerodynamic model generating unsteady time‐domain blade surface pressure distributions and including effects of compressibility and a free‐wake was developed. This aerodynamic tool was incorporated into an aeroelastic model featuring fully coupled flap‐lag‐torsional dynamics and including moderate deflections. An acoustic prediction tool based on WOPWOP was also introduced and modified to fully account for blade flexibility on noise generation. This unified aeroelastic/aeroacoustic analysis program was validated with experimental aerodynamic and acoustic data. Single and dual ACF configurations were used to reduce 4/rev vibrations in descending flight, where heavy blade‐vortex interaction (BVI) effects are expected, and the accompanying changes to noise generation were carefully examined. It was observed that noise on a carpet plane beneath the rotor increases by 1–3 dB for all ACF vibration reduction configurations simulated. However, imposing saturation limits on flap deflections and using the dual flap configuration was found to reduce the acoustic penalty as a result of vibration reduction.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan

Publication date: 01 January 2005

More about this publication?
  • The Journal of the American Helicopter Society is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by AHS International and presents innovative papers covering the state-of-the-art in all disciplines of rotorcraft design, research and development. (Please note that AHS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are AHS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the AHS website.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more