Skip to main content

Identification of Bearingless Main Rotor Dynamic Characteristics from Frequency‐Response Wind‐Tunnel Test Data

Buy Article:

$30.00 plus tax (Refund Policy)


The control response dynamics of the Sikorsky Bearingless Main Rotor (SBMR) were determined from frequency‐response test data in the NASA 40×80 foot wind tunnel. The CIFER® (Comprehensive Identification from FrEquency Responses) tool was used to extract the rotor's physical characteristics based on a linearized 9 degree‐of‐freedom analytical formulation of the SBMR dynamics. The paper reviews identification methods and results for two flight conditions (40 kts, μ = 0.093; and 100 kts, μ = 0.233), with particular emphasis placed on off‐axis modeling. The identified model responses track the wind tunnel data closely, and the extracted physical parameters show excellent consistency across the flight conditions. There is also very good agreement between the identified parameters and the key GenHel simulation parameters. An empirical modeling parameter “aerodynamic phase lag” (ψa) is included in the identification structure that corrects the SBMR off‐axis dynamic response modeling discrepancies for the wind tunnel case, and is applicable to free‐flight modeling. The results indicate that the primary physical sources for the total aerodynamic phase lag are dynamic wake distortion and 2‐D compressible unsteady aerodynamics. There is good agreement with theoretical predictions of these effects. A proposed modification to the 3‐state dynamic inflow equations provides an alternate explicit correction for the wake distortion effect that is based on theoretical analyses. The SBMR results support the validity of rotor models based on: effective hinge‐offset, dynamic flow, and the aerodynamic phase lag correction to simulate the flight mechanics responses of bearingless main rotor helicopters.

Document Type: Research Article


Publication date: January 1, 1999

More about this publication?
  • The Journal of the American Helicopter Society is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by AHS International and presents innovative papers covering the state-of-the-art in all disciplines of rotorcraft design, research and development. (Please note that AHS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are AHS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the AHS website.


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more