In‐Flight Far‐Field Measurement of Helicopter Impulsive Noise

$30.00 plus tax (Refund Policy)

Buy Article:


A new and highly successful method of collecting far‐field acoustic data radiated by helicopters in forward flight has been developed, utilizing a quiet aircraft flying in formation ahead of the subject helicopter. The lead aircraft, flown as an acoustic probe, was equipped with tape‐recording equipment and an external microphone. Spatial orientation of the helicopter with respect to the monitoring aircraft was achieved through visual flight reference. Far‐field acoustic data defining the impulsive noise radiation characteristics of the UH‐1H helicopter during high‐speed flight and partial ‐power descents have been gathered with this technique. Three distinct types of impulsive waveforms have been identified and correlated with helicopter steady operating conditions.

Document Type: Research Article


Affiliations: Ames Directorate, U.S. Army Air Mobility R&D Laboratory, Moffett Field, Calif.

Publication date: October 1, 1976

More about this publication?
  • The Journal of the American Helicopter Society is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by AHS International and presents innovative papers covering the state-of-the-art in all disciplines of rotorcraft design, research and development. (Please note that AHS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are AHS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the AHS website.

Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more