Skip to main content

Prediction with Misspecified Models

Buy Article:

$19.00 plus tax (Refund Policy)

Abstract:

The assumption that one of a set of prediction models is a literal description of reality formally underlies many formal econometric methods, including Bayesian model averaging and most approaches to model selection. Prediction pooling does not invoke this assumption and leads to predictions that improve on those based on Bayesian model averaging, as assessed by the log predictive score. The paper shows that the improvement is substantial using a pool consisting of a dynamic stochastic general equilibrium model, a vector autoregression, and a dynamic factor model, in conjunction with standard US postwar quarterly macroeconomic time series.

Document Type: Research Article

DOI: https://doi.org/10.1257/aer.102.3.482

Publication date: 2012-05-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more