Skip to main content

Searching and Learning by Trial and Error

Buy Article:

$19.00 plus tax (Refund Policy)

Abstract:

I study a dynamic model of trial-and-error search in which agents do not have complete knowledge of how choices are mapped into outcomes. Agents learn about the mapping by observing the choices of earlier agents and the outcomes that are realized. The key novelty is that the mapping is represented as the realized path of a Brownian motion. I characterize for this environment the optimal behavior each period as well as the trajectory of experimentation and learning through time. Applied to new product development, the model shares features of the data with the well-known Product Life Cycle.

Document Type: Research Article

DOI: https://doi.org/10.1257/aer.101.6.2277

Publication date: 2011-10-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more