Energy Expenditure and Metabolism during Exercise in Persons with a Spinal Cord Injury

Author: Price, Michael

Source: Sports Medicine, 1 August 2010, vol. 40, no. 8, pp. 681-696(16)


Buy & download fulltext article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


Resting energy expenditure of persons with a spinal cord injury (SCI) is generally lower than that seen in able-bodied (AB) individuals due to the reduced amounts of muscle mass and sympathetic nervous system available. However, outside of clinical studies, much less data is available regarding athletes with an SCI. In order to predict the energy expenditure of persons with SCI, the generation and validation of prediction equations in relation to specific levels of SCI and training status are required. Specific prediction equations for the SCI would enable a quick and accurate estimate of energy requirements. When compared with the equivalent AB individuals, sports energy expenditure is generally reduced in SCI with values representing 30–75% of AB values. The lowest energy expenditure values are observed for sports involving athletes with tetraplegia and where the sport is a static version of that undertaken by the AB, such as fencing. As with AB sports there is a lack of SCI data for true competition situations due to methodological constraints. However, where energy expenditure during field tests are predicted from laboratory-based protocols, wheelchair ergometry is likely to be the most appropriate exercise mode. The physiological and metabolic responses of persons with SCI are similar to those for AB athletes, but at lower absolute levels. However, the underlying mechanisms pertaining to substrate utilization appear to differ between the AB and SCI. Carbohydrate feeding has been shown to improve endurance performance in athletes with generally low levels of SCI, but no data have been reported for mid to high levels of SCI or for sport-specific tests of an intermittent nature. Further research within the areas reviewed may help to bridge the gap between what is known regarding AB athletes and athletes with SCI (and other disabilities) during exercise and also the gap between clinical practice and performance.

Keywords: Energy-expenditure; Exercise; Metabolism; Spinal-cord-injuries; Sports; Sports-injuries

Document Type: Research Article

Affiliations: Department of Biomolecular and Sports Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK

Publication date: August 1, 2010

Related content


Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page