Skip to main content

Open Access A Clinically Translatable Mouse Model for Chemotherapy-Related Fatigue

Download Article:
(PDF 462 kb)


Fatigue is a debilitating and pervasive complication of cancer and cancer care. Clinical research investigating potential therapies is hindered by variability in patient histories, different metrics for measuring fatigue, and environmental factors that may affect fatigue. The purpose of this study was to establish an animal model of chemotherapy-related fatigue. Female HSD:ICR mice were treated with doxorubicin (2.5 mg/kg) or saline in 2 cycles (days 1 through 3 and 10 through 12). After treatment, mice were individually housed in cages equipped with running wheels. Open-field activity and motor coordination were examined after each cycle of treatment and after each week of wheel running. In a separate cohort, modafinil (50 mg/kg) was assessed as a potential treatment for fatigue. Doxorubicin administration resulted in greater than 30% less wheel running compared with that of saline controls. Activity differences were specific to wheel running: neither distance traveled in the open field nor motor coordination according to the rotarod test differed between groups. Compared with control values, RBC counts in the doxorubicin group were decreased on days 15 and 22 but recovered to control levels by study completion. Modafinil was efficacious in increasing wheel running in the doxorubicin group. The current results establish an animal model of chemotherapy-related fatigue that recapitulates the physical symptoms of cancer-related fatigue as manifested as decreased voluntary activity. This model is sensitive to pharmaceutical intervention and can be used to screen potential treatments for fatigue.

Document Type: Research Article

Affiliations: 1: Biomodels, Watertown, Massachusetts;, Email: 2: Biomodels, Watertown, Massachusetts

Publication date: December 1, 2013

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics