Skip to main content

Open Access Inbred and Outbred Mice Have Equivalent Variability in a Cockroach Allergen-Induced Model of Asthma

Download Article:
(PDF 331.4775390625 kb)
Outbred mice traditionally are considered to display high variability, thereby limiting their use in some studies. Researchers frequently are encouraged to use inbred strains of mice because of the greater homogeneity of these experimental animals. We compared the pulmonary inflammatory response of inbred BALB/cJ mice to that of outbred HSD-ICR mice by measuring multiple variables, including cytokines, chemokines, number of pulmonary inflammatory cells, and respiratory parameters. Cockroach allergens induced significant pulmonary inflammation in both BALB and ICR mice. Our comparisons of the coefficients of variance for 148 discrete data sets for each strain or stock indicated that BALB and ICR mice have roughly equivalent intrastrain or -stock variability in our model of asthma-like pulmonary inflammation. The average coefficient of variance, calculated as the ratio of the SD to the mean of a data set, was 0.35±0.34 for BALB mice compared with 0.31±0.32 for ICR mice. In conclusion, inbred BALB and outbred ICR mice have roughly equivalent intrastrain or -stock variability in a murine model of asthma-like pulmonary inflammation.

31 References.

No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts

Publication date: 2010-12-01

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more