Skip to main content

Open Access Use of Low-Molecular–Weight Heparin to Decrease Mortality in Mice after Intracardiac Injection of Tumor Cells

Download Article:
(PDF 294.017578125 kb)
Intracardiac injection of human tumor cells into anesthetized nude mice is an established model of bone metastasis. However, intracardiac injection of some human tumor cell lines cause acute neurologic signs and high mortality, making some potentially relevant tumor cell lines unusable for investigation. We showed that intracardiac injection of tumor cells can induce a hypercoagulable state leading to platelet consumption and thromboemboli formation and that pretreatment with intravenous injection of low-molecular–weight heparin (LMWH; enoxaparin) blocks this state. In addition, intravenous injection of enoxaparin before intracardiac injection with 2 different small-cell lung carcinoma lines, H1975 and H2126, dramatically decreased mouse mortality while still generating bone metastases. Therefore, reduction of mortality by pretreatment with LMWH increases the types of cells that can be studied in this metastasis model and decreases the number of animals used.

23 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Comparative Animal Research, Amgen Corporation, Seattle, Washington 2: Department of Oncology, Amgen Corporation, Seattle, Washington 3: Department of Pathology, Amgen Corporation, Seattle, Washington 4: Department of Pathology, Amgen Corporation, Seattle, Washington; Anatomic Pathology, Wyeth Research, Chazy, New York

Publication date: 2009-02-01

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more