Skip to main content

Open Access The Adult Göttingen Minipig as a Model for Chronic Heart Failure After Myocardial Infarction: Focus on Cardiovascular Imaging and Regenerative Therapies

Download Article:
 Download
(PDF 759.1 kb)
 

Abstract:

Porcine models have become increasingly popular in cardiovascular research. The standard farm pig rapidly increases in body weight and size, potentially confounding serial measurements of cardiac function and morphology. We developed an adult porcine model that does not show physiologic increases in heart mass during the study period and is suitable for long-term study. We compared adult minipigs with the commonly used adolescent Yorkshire swine. Myocardial infarction was induced in adult Göttingen minipigs and adolescent Yorkshire swine by occlusion of the left anterior descending coronary artery followed by reperfusion. At 8 wk after infarction, the left ventricular ejection fraction was 34.1 ± 2.3% in minipigs and 30.7 ± 2.0% in Yorkshire swine. The left ventricular end-diastolic mass in Yorkshire pigs assessed by magnetic resonance imaging increased 17 ± 5 g, from 42.6 ± 4.3 g at week 1 after infarction to 52.8 ± 6.6 g at week 8, whereas it remained unchanged in minipigs. Cardiac anatomy and physiology in adult minipigs were evaluated invasively by angiography and noninvasively by Multidetector Computed Tomography and by Magnetic Resonance Imaging at 1.5 T and 3 T prior to myocardial infarction and during folow-up. This porcine heart failure model is reproducible, mimics the pathophysiology in patients who have experienced myocardial infarction, and is suitable for imaging studies. New heart failure therapies and devices can be tested preclinically in this adult animal model of chronic heart failure.

Document Type: Research Article

Affiliations: 1: Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 2: Department of Medicine, Division of Cardiology, University of California–San Francisco, San Francisco, California 3: Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland 4: Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 5: Department of Medicine, Division of Cardiology, University of Miami, Miami, Florida

Publication date: December 1, 2008

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
aalas/cm/2008/00000058/00000006/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more