Skip to main content

Open Access Comparative Pathobiology of Macaque Lymphocryptoviruses

Download Article:
(PDF 422.3779296875 kb)
Lymphocryptoviruses (LCVs) have been identified as naturally occurring infections of both Old and New World nonhuman primates. These viruses are closely related to Epstein–Barr virus (EBV, Human herpesvirus 4) and share similar genomic organization and biological properties. Nonhuman primate LCVs have the ability to immortalize host cells and express a similar complement of viral lytic and latent genes as those found in EBV. Recent evidence indicates that nonhuman primate LCVs can immortalize B cells from genetically related species, suggesting a close evolutionary relationship between these viruses and their respective hosts. Early work with EBV in tamarins and owl monkeys revealed that cross species transmission of lymphocryptoviruses from the natural to inadvertent host may be associated with oncogenesis and the development of malignant lymphoma. Moreover, simian LCVs have the ability to induce malignant lymphomas in immunodeficient hosts and have been associated with posttransplantation lymphoproliferative disease in cynomolgus macaques undergoing solid organ transplantation. This review will focus on the comparative pathobiology of lymphocryptoviral infection and discuss the derivation of specific pathogen-free animals.

96 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Harvard Medical School, New England Primate Research Center, Southborough, MA, USA

Publication date: 2008-02-01

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more