Open Access Loss of Cortical Function in Mice After Decapitation, Cervical Dislocation, Potassium Chloride Injection, and CO2 Inhalation

 Download
(PDF 83.8 kb)
 
Download Article:

Abstract:

Electroencephalograms (EEG) and visual evoked potentials (VEP) in mice were recorded to evaluate loss of cortical function during the first 30 s after euthanasia by various methods. Tracheal cannulae (for positive-pressure ventilation, PPV) and cortical surface electrodes were placed in mice anesthetized with inhaled halothane. Succinylcholine was used to block spontaneous breathing in the mice, which then underwent continuous EEG recording. Photic stimuli (1 Hz) were presented to produce VEPs superimposed on the EEG. Anesthesia was discontinued immediately before euthanasia. Compared with that obtained before euthanasia, EEG activity during the 30-s study period immediately after euthanasia was significantly decreased after cervical dislocation (at 5 to 10 s), 100% PPV-CO2 (at 10 to 15 s), decapitation (at 15 to 20 s), and cardiac arrest due to KCl injection (at 20 to 25 s) but not after administration of 70% PPV-CO2. Similarly, these euthanasia methods also reduced VEP amplitude, although 100% PPV-CO2 treatment affected VEP amplitude more than it did EEG activity. Thus, 100% PPV-CO2 treatment significantly decreased VEP beginning 5 to 10 s after administration, with near abolition of VEP by 30 s. VEP amplitude was significantly reduced at 5 to 10 s after cervical dislocation and at 10 to 15 s after decapitation but not after either KCl or 70% PPV-CO2 administration. The data demonstrate that 100% PPV-CO2, decapitation, and cervical dislocation lead to rapid disruption of cortical function as measured by 2 different methods. In comparison, 70% PPV-CO2 and cardiac arrest due to intracardiac KCl injection had less rapid effects on cortical function.

Document Type: Miscellaneous

Publication date: December 1, 2007

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more