Skip to main content

Open Access Ultrasound Detection and Characterization of Polycystic Kidney Disease in a Mouse Model

Download Article:
 Download
(PDF 253.4 kb)
 

Abstract:

We sought to use ultrasonography to quantify renal size and echogenicity in a mouse model of polycystic kidney disease. We imaged 36 wild-type (WT) and juvenile cystic kidney (jck) mice by using a standard ultrasound unit and 10–5 MHz linear transducer. Mice were imaged at 3 (6 WT, 7 jck), 6 (7 WT, 5 jck), and 9 (6 WT, 5 jck) wk of age. Kidney length, width, and height were recorded for volume calculation. Sagittal images of both kidneys were recorded for assessment of intensity. Quantitative values were obtained from areas of similar depth and gain settings. Kidney and liver intensities were determined for calculation of their ratio. Representative histologic kidney sections were stained with hematoxylin and eosin and digitized for calculation of cyst number, mean cyst area, and percentage cystic area. We found that renal volume was greater in jck than WT mice at 3 (P < 0.0001), 6 (P < 0.0001), and 9 (P < 0.0001) wk of age. In addition, kidney intensity and kidney:liver ratio were higher in jck than WT mice at 3 (P < 0.002 for both parameters), 6 (P < 0.04), and 9 wk (P < 0.008). Kidneys with smaller mean cyst size and less percentage cystic space had higher intensity values. We therefore conclude that ultrasound measures of renal volume and intensity can noninvasively identify jck-affected mice as early as 3 wk of age. Cortical intensity is greater in jck versus WT mice and appears affected by percentage cyst area and mean cyst size.

Document Type: Research Article

Publication date: June 1, 2006

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • ingentaconnect is not responsible for the content or availability of external websites
aalas/cm/2006/00000056/00000003/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more