Open Access Hyperglycemia-Induced Insulin Resistance in Diabetic Dyslipidemic Yucatan Swine

 Download
(PDF 127.2kb)
 
Download Article:

Abstract:

Hyperglycemia, dyslipidemia, and associated insulin resistance are hallmarks of diabetes mellitus. Purposes of the study reported here were to develop practical methods for assessment of in vivo insulin sensitivity and determine contributions of hyperglycemia and dyslipidemia to insulin resistance in the porcine model of alloxan-induced diabetes mellitus and dyslipidemia. Male Yucatan swine groups were treated for 20 weeks: control (C), high fat-fed (2% cholesterol) hyperlipidemic (H), alloxan-induced diabetic normolipidemic (D), diabetic high fat-fed (diabetic dyslipidemic, DD), and diabetic dyslipidemic treated with the lipid-lowering agent atorvastatin (DDA). Plasma cholesterol concentration increased sixfold in animals of groups H, DD, and DDA, whereas triglyceride concentration increased threefold in animals of group DD only. Diabetics had decreases in glucose tolerance and pancreatic immunostaining for insulin. Use of the gold standard hyperinsulinemic euglycemic clamp procedure indicated that maximal insulin-stimulated glucose uptake was similar to that in humans, but this method was not practical for use in pigs. Instead, a more convenient and valid insulin sensitivity test involving suppression of insulin secretion with somatostatin and a single insulin injection was used. Insulin sensitivity was greatly impaired by anesthesia with isoflurane, but was not affected by use of the anxiolytic agent diazepam. Insulin sensitivity decreased by 75% in diabetics (groups D, DD, DDA), compared with animals of groups C and H, and was inversely related to fasting blood glucose concentration (r = –0.72). Insulin treatment to restore blood glucose values of diabetics (>250 mg/dl) to near control values (<100 mg/dl) promptly restored insulin sensitivity to control values. We conclude that hyperglycemia is a major cause of insulin resistance in the porcine model of alloxan-induced diabetes mellitus and dyslipidemia.

Document Type: Research Article

Affiliations: 1: Departments of Physiology, University of Missouri, Columbia, Missouri 65212 2: Departments of Physiology, Internal Medicine, School of Medicine, and Diabetes & Cardiovascular Biology Program, University of Missouri, Columbia, Missouri 65212

Publication date: February 1, 2003

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more