Skip to main content

Open Access A Transgenic Mouse Strain with Antigen-specific T Cells (RAG1KO/sf/OVA) Demonstrates that the Scurfy (sf) Mutation Causes a Defect in T-Cell Tolerization

Download Article:
 Download
(PDF 87.259765625 kb)
 
The scurfy (sf) murine mutation causes severe lymphoproliferation, which results in death of hemizygous males (sf/Y) by 22 to 26 days of age. The CD4+ T cells are crucial mediators of this disease. Recent publications have not only identified this mutation as the genetic equivalent of the human disease X-linked neonatal diabetes mellitus, enteropathy, and endocrinopathy syndrome, but also have indicated that the defective protein—scurfin—is a new forkhead/winged-helix protein with a frameshift mutation, resulting in a product without the functional forkhead. These results have lead to speculation that the scurfy gene acts by disrupting the T-cell tolerance mechanism, resulting in hyperresponsiveness and lack of down-regulation. The Rag1KO/sf/Y OVA strain, with virtually 100% of its CD4+ T cells reactive strictly to ovalbumin (OVA) peptide 323-339, is an excellent model for determination of the sf mutation's ability to disrupt tolerance. We hypothesized that Rag1KO/sf/OVA mice would not be tolerant to antigen at a dose that tolerizes control animals. We found that splenic cells from Rag1KO/sf/Y OVA mice injected with the same dose of OVA peptide that induces tolerance in cells from control mice proliferate in vitro in response to OVA peptide. These results are consistent with a defect in the pathway responsible for peripheral T-cell tolerization.

16 References.

No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2002-02-01

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more